Curvature pinching for totally real submanifolds of a complex projective space

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Totally Real Submanifolds in a Complex Projective Space

In this paper, we establish the following result: Let M be an n-dimensional complete totally real minimal submanifold immersed in CPn with Ricci curvature bounded from below. Then either M is totally geodesic or infr ≤ (3n+1)(n−2)/3, where r is the scalar curvature of M .

متن کامل

Pseudo Ricci symmetric real hypersurfaces of a complex projective space

Pseudo Ricci symmetric real hypersurfaces of a complex projective space are classified and it is proved that there are no pseudo Ricci symmetric real hypersurfaces of the complex projective space CPn for which the vector field ξ from the almost contact metric structure (φ, ξ, η, g) is a principal curvature vector field.

متن کامل

RICCI CURVATURE OF SUBMANIFOLDS OF A SASAKIAN SPACE FORM

Involving the Ricci curvature and the squared mean curvature, we obtain basic inequalities for different kind of submaniforlds of a Sasakian space form tangent to the structure vector field of the ambient manifold. Contrary to already known results, we find a different necessary and sufficient condition for the equality for Ricci curvature of C-totally real submanifolds of a Sasakian space form...

متن کامل

Willmore Lagrangian Submanifolds in Complex Projective Space

Let M be an n -dimensional compact Willmore Lagrangian submanifold in a complex projective space CPn and let S and H be the squared norm of the second fundamental form and the mean curvature of M . Denote by ρ2 = S−nH2 the non-negative function on M , K and Q the functions which assign to each point of M the infimum of the sectional curvature and Ricci curvature at the point. We prove some inte...

متن کامل

Kähler Submanifolds with Lower Bounded Totally Real Bisectional Curvature Tensor

In this paper, we prove that if every totally real bisectional curvature of an n(≥ 3)-dimensional complete Kähler submanifold of a complex projective space of constant holomorphic sectional curvature c is greater than c 4(n2−1)n(2n− 1), then it is totally geodesic. Mathematics Subject Classifications: 53C50, 53C55, 53C56.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Mathematical Society of Japan

سال: 2000

ISSN: 0025-5645

DOI: 10.2969/jmsj/05210051